6  Riferimenti

Autore/Autrice

Erik De Luca

Bellman, Richard Ernest. 1957. Dynamic Programming. Princeton University Press. https://books.google.com/books?id=wdtoPwAACAAJ.
Berry, Lucas. 2016. «Hybrid Hidden Markov Model and Generalized Linear Model for Auto Insurance Premiums». Mathesis, Concordia University. https://spectrum.library.concordia.ca/id/eprint/982074/.
Bingham, Eli, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, e Noah D. Goodman. 2018. «Pyro: Deep Universal Probabilistic Programming». Journal of Machine Learning Research.
Bishop, Christopher M. 2006. Pattern Recognition and Machine Learning. Springer.
Bordandini, Paola. 2025. «Geografie del capitale sociale. Trent’anni di senso civico in Italia». Riccardo Prandini. https://cris.unibo.it/retrieve/ee59ddb4-bdeb-4be5-8d2e-e70467252248/Donazioni%20di%20sangue.pdf.
Box, George EP. 1976. «Science and statistics». Journal of the American Statistical Association 71 (356): 791–99.
Cappè, Olivier, Eric Moulines, e Tobias Rydèn. 2005. Inference in Hidden Markov Models. Springer.
Caselli, Graziella, Jacques Vallin, e Guillaume Wunsch. 2006. Demografia. Analisi e sintesi. Bologna: Il Mulino.
Couch, Simon, e Max Kuhn. 2025. stacks: Tidy Model Stacking. https://stacks.tidymodels.org/.
Degirmenci, Alperen. 2014. «Introduction to Hidden Markov Models». https://scholar.harvard.edu/files/adegirmenci/files/hmm_adegirmenci_2014.pdf.
Fan, Jieyu. 2015. «On Markov and Hidden Markov Models with Applications to Trajectories».
Guglielmetti Mugion, Roberta, Maria Giovina Pasca, Laura Di Pietro, e Maria Francesca Renzi. 2021. «Promoting the propensity for blood donation through the understanding of its determinants». BMC Health Services Research 21 (1): 127. https://doi.org/10.1186/s12913-021-06134-8.
Hastie, T., R. Tibshirani, e J. Friedman. 2009. The Elements of Statistical Learning. 2nd ed. Springer.
Hoffman, Matthew D., David M. Blei, Chong Wang, e John Paisley. 2013. «Stochastic Variational Inference». Journal of Machine Learning Research.
ISTAT. 2023a. «Bilancio demografico e popolazione residente: definizioni e note metodologiche». Roma: Istituto Nazionale di Statistica.
———. 2023b. «Tavole di mortalità della popolazione residente: metodi e note tecniche». Roma: Istituto Nazionale di Statistica.
James, Gareth, Daniela Witten, Trevor Hastie, e Robert Tibshirani. 2013. An Introduction to Statistical Learning. Springer.
Levin, David A., Yuval Peres, e Elizabeth L. Wilmer. 2009. Markov Chains and Mixing Times. American Mathematical Society.
Murphy, Kevin P. 2012. Machine Learning: A Probabilistic Perspective. MIT Press.
Nomisma. 2024. «Osservatorio Nazionale Donazione Sangue e Plasma». https://www.nomisma.it/press-area/osservatorio-nazionale-donazione-sangue-e-plasma/.
Norris, J. R. 1997. Markov Chains. Cambridge University Press.
Pati, Ilaria, Claudio Velati, Carlo Mengoli, Massimo Franchini, Francesca Masiello, Giuseppe Marano, Eva Veropalumbo, et al. 2021. «A forecasting model to estimate the drop in blood supplies during the SARS‐CoV‐2 pandemic in Italy». Transfusion Medicine 31 (marzo): 200–205. https://doi.org/10.1111/tme.12764.
R Core Team. 2023. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
Rabiner, Lawrence R. 1989. «A tutorial on Hidden Markov Models and selected applications in speech recognition». Proceedings of the IEEE 77 (2): 257–86. https://doi.org/10.1109/5.18626.
Saturni, Vincenzo, Giorgio Fiorentini, e Elisa Ricciuti. 2017. La Vis di Avis: La Valutazione di Impatto Economico e Sociale dell’Associazione Volontari Italiani del Sangue. FrancoAngeli.
Scott, Steven L. 2002. «Bayesian Methods for Hidden Markov Models». Journal of the American Statistical Association 97 (457): 337–51. https://doi.org/10.1198/016214502753479464.
Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D’Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019. «Welcome to the tidyverse». Journal of Open Source Software 4 (43): 1686. https://doi.org/10.21105/joss.01686.
Wit, Ernst, Edwin van den Heuvel, e Jan-Willem Romeyn. 2012. «"All models are wrong...": an introduction to model uncertainty». Statistica Neerlandica 66 (3): 217–36. https://doi.org/10.1111/j.1467-9574.2012.00530.x.
Zucchini, Walter, Iain L. MacDonald, e Roland Langrock. 2016. Hidden Markov Models for Time Series: An Introduction Using R. 2ª ed. CRC Press.